domenica 7 novembre 2010

R is a cool image editor!

Ecco qualche funzione per ricreare alcuni dei più famosi effetti da applicare sulle immagini, disponibili nella gran parte degli editor (Photoshop incluso)
Per poter caricare e modificare le immagini, è necessario installare la library rimage.
Per caricare una immagina, il codice è il seguente:

y <- read.jpeg("path")


Per plottare l'immagine, usiamo invece:

plot(y)




Original image







Sepia tone


rgb2sepia <- function(img){
iRed <- img[,,1]*255
iGreen <- img[,,2]*255
iBlue <- img[,,3]*255
 
oRed <- iRed * .393 + iGreen * .769 + iBlue * .189
oGreen <- iRed * .349 + iGreen * .686 + iBlue * .168
oBlue <- iRed * .272 + iGreen * .534 + iBlue * .131
 
qw <- array( c(oRed/255 , oGreen/255 , oBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2sepia(y))






Negative


rgb2neg <- function(img){
iRed <- img[,,1]
iGreen <- img[,,2]
iBlue <- img[,,3]
 
oRed <- (1 - iRed)
oGreen <- (1 - iGreen)
oBlue <- (1 - iBlue)
 
qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2neg(y))






Pixelation


pixmatr <- function(a, n){
aa <- seq(1,dim(a)[1],n)
ll <- seq(1,dim(a)[2],n)
 
for(i in 1:(length(aa)-1) ){
for(j in 1:(length(ll)-1) ){
sub1 <- a[aa[i]:(aa[i+1]-1),ll[j]:(ll[j+1]-1)]
k <- mean(sub1)
sub1m <- matrix( rep(k, n*n), n, n)
a[aa[i]:(aa[i+1]-1),ll[j]:(ll[j+1]-1)] <- sub1m
}
}
 
for(j in 1:(length(ll)-1) ){
sub1 <- a[max(aa):dim(a)[1],ll[j]:(ll[j+1]-1)]
k <- mean(sub1)
sub1m <- matrix( rep(k, nrow(sub1)*ncol(sub1)), nrow(sub1), ncol(sub1))
a[max(aa):dim(a)[1],ll[j]:(ll[j+1]-1)] <- sub1m
}
 
for(i in 1:(length(aa)-1) ){
sub1 <- a[aa[i]:(aa[i+1]-1),max(ll):dim(a)[2]]
k <- mean(sub1)
sub1m <- matrix( rep(k, nrow(sub1)*ncol(sub1)), nrow(sub1), ncol(sub1))
a[aa[i]:(aa[i+1]-1),max(ll):dim(a)[2]] <- sub1m
}
 
sub1 <- a[max(aa):dim(a)[1], max(ll):dim(a)[2]]
k <- mean(sub1)
sub1m <- matrix( rep(k, nrow(sub1)*ncol(sub1)), nrow(sub1), ncol(sub1))
a[max(aa):dim(a)[1], max(ll):dim(a)[2]] <- sub1m
 
a
}
 
rgb2pix <- function(img,n){
iRed <- img[,,1]*255
iGreen <- img[,,2]*255
iBlue <- img[,,3]*255
 
oRed <- pixmatr(iRed,n)
oGreen <- pixmatr(iGreen,n)
oBlue <- pixmatr(iBlue,n)
 
qw <- array( c(oRed/255 , oGreen/255 , oBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2pix(y, 6))
plot(rgb2pix(y, 10))







Remove red


rgb2blu <- function(img){
iRed <- img[,,1]
iGreen <- img[,,2]
iBlue <- img[,,3]
 
oRed <- matrix(0, dim(iRed)[1], dim(iRed)[2])
oGreen <- iGreen
oBlue <- iBlue
 
qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2blu(y))






Remove green


rgb2vio <- function(img){
iRed <- img[,,1]
iGreen <- img[,,2]
iBlue <- img[,,3]
 
oRed <- iRed
oGreen <- matrix(0, dim(iRed)[1], dim(iRed)[2])
oBlue <- iBlue
 
qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2vio(y))






Remove blue


rgb2yel <- function(img){
iRed <- img[,,1]
iGreen <- img[,,2]
iBlue <- img[,,3]
 
oRed <- iRed
oGreen <- iGreen
oBlue <- matrix(0, dim(iRed)[1], dim(iRed)[2])
 
qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2yel(y))






Adjust brightness


rgb2bri <- function(img, n){
iRed <- img[,,1]
iGreen <- img[,,2]
iBlue <- img[,,3]
 
oRed <- iRed + (iRed * n)
oGreen <- iGreen + (iGreen * n)
oBlue <- iBlue + (iBlue * n)
 
qw <- array( c(oRed, oGreen, oBlue), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2bri(y, +0.5))
plot(rgb2bri(y, -0.5))







Truncate colors into bands (posterize)


rgb2ban <- function(img, n){
iRed <- img[,,1]*255
iGreen <- img[,,2]*255
iBlue <- img[,,3]*255
 
band_size <- trunc(255/n)
 
oRed <- band_size * trunc(iRed / band_size)
oGreen <- band_size * trunc(iGreen / band_size)
oBlue <- band_size * trunc(iBlue / band_size)
 
qw <- array( c(oRed/255, oGreen/255, oBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2ban(y, 5))
plot(rgb2ban(y, 10))







Solarize


rgb2sol <- function(img){
iRed <- img[,,1]*255
iGreen <- img[,,2]*255
iBlue <- img[,,3]*255
 
for(i in 1:dim(iRed)[1]){
for(j in 1:dim(iRed)[2]){
if(iRed[i,j]<128) iRed[i,j] <- 255-2*iRed[i,j]
else iRed[i,j] <- 2*(iRed[i,j]-128)
}
}
 
for(i in 1:dim(iGreen)[1]){
for(j in 1:dim(iGreen)[2]){
if(iGreen[i,j]<128) iGreen[i,j] <- 255-2*iGreen[i,j]
else iGreen[i,j] <- 2*(iGreen[i,j]-128)
}
}
 
for(i in 1:dim(iBlue)[1]){
for(j in 1:dim(iBlue)[2]){
if(iBlue[i,j]<128) iBlue[i,j] <- 255-2*iBlue[i,j]
else iBlue[i,j] <- 2*(iBlue[i,j]-128)
}
}
 
qw <- array( c(iRed/255, iGreen/255, iBlue/255), dim=c(dim(iRed)[1],dim(iRed)[2],3) )
 
imagematrix(qw, type="rgb")
}
 
plot(rgb2sol(y))




4 commenti:

  1. Consiglio anche di dare un'occhiata anche all'ottimo package EBImage che potete scaricare da questo link http://www.bioconductor.org/packages/release/bioc/html/EBImage.html

    RispondiElimina
  2. Articolo interessante che mostra un uso "alternativo" di R ma una osservazione: almeno qui pensavo di potermi risparmiare la onnipresente Chiara Ferragni!!!

    RispondiElimina
  3. @Paolo
    grazie per la segnalazione!

    @Anonimo
    sinceramente non avevo idea di chi fosse, e anche il nome non mi dice niente! Ho scelto la prima figura femminile che Google Image mi ha restituito :)

    RispondiElimina
  4. @Todos Logos Grazie a Te per l'ottimo blog! Colgo l'occasione per ringraziarti in particolare del post sull'analisi di sopravvivenza che mi è stato molto utile come strumento 'educational' con dei colleghi!

    RispondiElimina